
english: the lightest weight
programming language

of them all

hugo liu & henry lieberman
mit media laboratory

lightweight languages 2004

programming is storytelling

• every program tells a story
– objects ~ characters
– behaviours ~ personality

• traditionally expressed in
programming languages
– easy for computers
– difficult for people to read,

understand, and author
fluently

a non-programmer’s description of Pacman
(courtesy: Pane et alii, 2001)

talk overview

metafor: visualising stories as code

a theory of programmatic semantics for NL

“common sense” knowledge for the interpreter

implementation

metafor: visualising stories as code

•

under-the-
hood debug
window

story
rendered
as code
(in Python as
shown)

user enters
story here

history of
dialogue with

system agent,
who explains

what was
understood

metafor demo

click here

http://web.media.mit.edu/~hugo/demos/metafor-bartender-simple.mov

putting metafor in context

• scope & limitations
– only generates non-executable ‘scaffolding code’
– cannot convert arbitrary English into fully specified code
– however, broad coverage sufficient for brainstorming, program

“outlining”
• related work

– machine translation and interlingua
– pseudo-nl domain languages

• nl interface to MOOs (Bruckman, 1997)
• Natural Language SQL interfaces, e.g. MS-SQL

– case tools for UML requirements engineering
• exploits structure of requirements documents
• keyword-parse into flowchart (Hars & Marchewka, 1996)
• grammar-based parsers: NL-OOPS (Mich, 1996); (Lee & Bryant, 2002)

– user-supervised outlining: UTEL (Tam et alii, 1998)

a theory of programmatic semantics
for natural language

• natural language has
an inherent programmatic regularity

– resembles object-oriented and agent-oriented programming
– relies heavily on prototyping, and common sense knowledge

• to oversimplify…
– noun phrases objects

• e.g. “the martini”

– verbs functions
• e.g. “make a drink”

– adjectives properties
• e.g. “sweet drinks”

– adverbials parameters
• e.g. “quickly make a

drink”

further basic programmatic features

• verb-arg structure function-arg structure
– e.g. “give the drink to the customer”

• conventions for prototype inheritance
– e.g. “a martini is a drink which …”

• attachment semantics an object’s parts
– e.g. “the customer’s age” customer.age
– e.g. “a bar with a bartender”
– e.g. “some stools in the bar”
– e.g. “the bar has some customers”

scoping

• conditionals
– subjunctive constructions

• If the drink is on the menu , then make it
• Should the customer not ordered, the bartender would not

have made the drink
• In the case that the drink is expensive, he won’t order it.

– implied
• The customer may order a sweet drink (auxiliary)
• Sometimes he orders a sweet drink and … (set theoretic)

• when
– when the drink is sweet, order it. (topical object)
– when the customer orders it, the bartender makes it.

(topical agent action)

set-theoretic features

• tendency not to express loop structure (cf. pane et alii, 2001)
• dynamic reference

– The customer buys some of the sweet drinks under $2.

map(customer.buy,
filter(lambda sdu2: some(sdu2),
filter(lambda sweet_drink: sweet_drink.price < 2,
filter(lambda drink: ‘sweet’ in drink.properties,
menu.drinks)))

• set-theoretic semantics
– comparatives/superlatives (“the cheaper/cheapest drink”);
– subsets (e.g. “all drinks have,” “some drinks

..while others…”)
– complementizer procedural attachment

• e.g. “the drink which Bill would like the best”

representational dynamism

• for nl, underlying representation is fluid
a) There is a bar. (atom)
b) The bar contains two customers. (unimorphic list)

c) It also contains a waiter. (unimorphic wrt. persons)
d) It also contains some stools. (polymorphic list)

e) The bar opens and closes. (class / agent)
f) The bar is a kind of store. (inheritance class)

g) Some bars close at 6pm. (subclass or instantiatable)

• nominalization (i.e. casting an adjective as a noun)
The drink is sweet.
The drink has sweetness.

dynamic refactoring

• ambiguity never killed anybody!
– conventional programming often forces a programmer to

make inessential decisions about representation details far
too early in the design and programming process

• sour apple martini
class sour_apple_martini

• sour apple martini,
sweet apple martini,
sour grape martini

class martini:
def __init__(self,flavor=‘sour’,fruit=‘apple’):
self.flavor, self.fruit = flavor, fruit

metafor’s generic functions
(full_name, arguments, body)

• cf. generic functions in CLOS
• dynamic type inspector is heuristic

– e.g., body contains two similarly typed elements listType
– e.g., body contains functions classType
– propagates symmetry in peer objects

• apple has color, therefore, strawberry has color

– predefined functions for flow control statements
• inspector assumes simplicity

– adds complexity only as necessary
– irresolvable representational conflicts formulated as question and

fed back to user via dialog
– uses referential cues (anaphoric reference, appositives) to aid in

disambiguation

narrative stance equivalences

• bar has part customer
a) I want to make a bar with a customer. (1st p.

programmer)
b) There is a customer in the bar. (3rd p. narrator)

c) I am a customer sitting on a stool. (1st p. customer)
d) The bartender said, “Here is a customer” (mixed p.

playwright)

prototypes & background semantics

• thought is inherently metaphorical
(lakoff & johnson, 1980)
– e.g. system for “time” is partially structured by “money”
– e.g. “academic repartee ” structured by “war”
– Narayanan (1997) maps linguistic metaphors to schemas

• personification: partial inheritance from person prototype
• to complicate things,

– in nl, not just object inheritance, but also system inheritance
• what are some background semantics kbs?

– Cyc (Lenat, 1980)
– ConceptNet (Liu & Singh, 2004)

conceptNet: a source of background semantics

• semantic network with 300,000 nl nodes, 1.6 million edges
• contains defeasible world knowledge

– e.g.
• “kicking someone causes pain”
• “a lemon is sour”

• some mappings to programmatic knowledge
CapableOf(x,y) x.y()
LocationOf(x,y) y.x
PropertyOf(x,y) x.y
PartOf(x,y) x.y
IsA(x,y) class x(y)
EffectOf(w.x,y.z) w.x(): y.z

heuristic type inference with conceptnet

• Click here

http://web.media.mit.edu/~hugo/demos/conceptnet-guessconcept.mov
http://web.media.mit.edu/~hugo/demos/conceptnet-guessconcept.mov

other advanced features

• declaration-execution equivalence
– e.g. “there are some sweet drinks”; “buy some

sweet drinks”)
– e.g. “the bartender makes the drinks”;

“when … the bartender makes the drinks”)
• anaphora / deixis (e.g. “he”, “this”, “here”)
• lazy evaluation (e.g. “the cheapest drink”)

implementation basics
• we parsed the input text into syntactic frames

– {verb: ‘parse’, subj: ‘us’, obj:’input text’, obj2: ‘into syntactic frame’}

– using the MontyLingua NLP package (pypi)
• semantic recognition agents

– conceptNet: recognition of default semantic types
• e.g.: ‘bins’ are likely containers

– wordNet (Fellbaum, 1998): sets of objects
• e.g.: colors: red, orange, yellow, green…

• programmatic interpreter
– resolve textual references to existing objects
– handle special structures

• e.g. scoping statements, lists, quotes, flow control

– map VSOO structures to some action or change
– update deictic discourse stack, scope, and interpretive context (i.e.

declarative versus procedural)

vaporware

• exploit the richness of verb-argument structure
– FrameNet (Fillmore, 1968)
– Levin’s verb classes & alternations (1993)

• accounting for the implied behaviour of verbs
– “the effect of x giving something to y is that y receives it”

• refine the scaffolding code
– meaning negotiation through dialogue
– guide interaction with a programming “plan”,

• a la programmer’s apprentice (Rich & Waters, 1990)

brainstorming & outlining with metafor

• metafor makes user accountable for the
consequences of their language
– exposes implied knowledge / knowledge gaps
– exposes metaphorical structure of thought

• e.g. “there is a way for the bartender to…”

• as a constructionist educational tool
– hypothesis: precise storytelling is a requisite for

good programming
– a programming “tutor” for novices

proficient in reading but not writing code

readings

• Hugo Liu and Henry Lieberman: 2005, Metafor: Visualizing
Stories as Code. Proceedings of the 2005 ACM International
Conference on Intelligent User Interfaces, to appear

• Hugo Liu and Henry Lieberman: 2004b, Toward a
Programmatic Semantics of Natural Language. Proceedings
of VL/HCC'04: the 20th IEEE Symposium on Visual
Languages and Human-Centric Computing. pp. 281-282.
September 26-29, 2004, Rome. IEEE Computer Society Press.

• Henry Lieberman and Hugo Liu: 2004a, Feasibility Studies
for Programming in Natural Language. H. Lieberman, F.
Paterno, and V. Wulf (Eds.) Perspectives in End-User
Development, to appear. Kluwer.

	english: the lightest weightprogramming languageof them all
	programming is storytelling
	talk overview
	metafor: visualising stories as code
	metafor demo
	putting metafor in context
	a theory of programmatic semantics for natural language
	further basic programmatic features
	scoping
	set-theoretic features
	representational dynamism
	dynamic refactoring
	metafor’s generic functions(full_name, arguments, body)
	narrative stance equivalences
	prototypes & background semantics
	conceptNet: a source of background semantics
	heuristic type inference with conceptnet
	other advanced features
	implementation basics
	vaporware
	brainstorming & outlining with metafor
	readings

